Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(10): 4135-4148, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32845140

RESUMO

Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures. These bioaromatic oligomers surpass technical Kraft lignin in terms of purity, solubility, and functionality and thus cannot even be compared to this common feedstock directly for material production. Instead, we performed comparative experiments with Kraft oligomers of similar molecular weight (Mn ∼ 1000) obtained through solvent extraction. These oligomers were then formulated into polyurethane materials. Substantial differences in material properties were observed depending on the amount of lignin, the botanical origin, and the biorefining process (AAF vs Kraft), suggesting new design principles for lignin-derived biopolymers with tailored properties. These results highlight the surprising versatility of AAF oligomers towards the design of new biomaterials and further demonstrate that AAF can enable the conversion of all biomass fractions into value-added products.


Assuntos
Lignina , Poliuretanos , Aldeídos , Fracionamento Químico
2.
PLoS Genet ; 12(2): e1005843, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26849847

RESUMO

Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101(Mms22) ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101(Mms22) E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1's replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Complexos Multienzimáticos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Proteínas Culina/química , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genes Fúngicos , Recombinação Homóloga/genética , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
3.
Integr Biol (Camb) ; 7(4): 412-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25734609

RESUMO

Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.


Assuntos
Retroalimentação Fisiológica/fisiologia , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osmorregulação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Simulação por Computador , Modelos Biológicos , Pressão Osmótica/fisiologia
5.
Planta ; 231(5): 1101-11, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20237895

RESUMO

We have studied the possible role, in a plant glutamine synthetase (GS), of the different cysteinyl residues present in this enzyme. For this purpose we carried out the site-directed mutagenesis of the cDNA for alpha-GS polypeptide from Phaseolus vulgaris in the positions corresponding to Cys-92, Cys-159, and Cys-179, followed by heterologous expression in E. coli and enzymatic characterisation of WT and mutant proteins. The results show that neither Cys-92 nor Cys-179 residues were essential for enzyme activity, but the replacement of Cys-159 by alanine or serine strongly affects the quaternary structure and function of the GS enzyme molecule, resulting in a complete loss of enzymatic activity. Other studies using sulfhydryl specific reagents such as pHMB (p-hydroxymercuribenzoate) or DTNB (5,5'-dithiobis-2-nitrobenzoate) confirmed that the profound inhibition produced is associated with an important alteration of the quaternary structure of GS, and suggest that Cys-159 might be the residue responsible for the enzyme inhibition. All these results suggest that the Cys-159 residue is essential for the enzyme structure. The results are also consistent with previous reports based on classical biochemistry studies indicating the presence of essential cysteinyl residues for the enzyme activity of higher plant GS.


Assuntos
Cisteína/metabolismo , Glutamato-Amônia Ligase/química , Phaseolus/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Escherichia coli , Glutamato-Amônia Ligase/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Phaseolus/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Reagentes de Sulfidrila/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...